建設の施工企画 '13.1 83

CMI 報告

地盤振動の伝搬経路対策と 振動低減効果

齋藤 聡輔

1. はじめに

建設工事, 道路供用等により発生する地盤振動は, 付近の建物に物理的被害を及ぼし, 周辺住民に精神的 影響を与える場合があり, 問題となる場合がある。

ここで振動低減対策を対象とした市街地における高架橋工事は、住宅や学校、病院など人口密集地区に対する地盤振動を低減することが求められている。そのため、施工現場では、工事および道路供用後の振動低減対策が必要である。この現場では、ジョイントを減らした多径間連続橋を採用するほか、新技術である回転抗施工による回転圧入鋼管杭基礎を用いるなど、沿道に対する振動発生量の低減に努めている。しかし、施工現場の近くに住宅があることや橋梁架設位置で厚層 50 m の沖積粘性土層の軟弱地盤が分布していることから、さらなる、振動低減対策が必要になった。

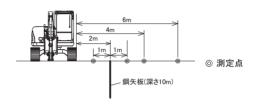
本稿では、地盤振動の伝搬経路における振動低減対 策として、鋼矢板や EPS (発泡スチロール) のよう な入手が容易で様々な用途に用いられる材料を振動伝 搬経路の地中に設置して防振壁とした場合と、これら 防振壁と空溝を組み合わせた場合について、現地振動 測定を実施し振動低減効果をとりまとめたものであ る。また、その結果をもとに、施工現場における振動 低減効果を予測した事例について報告する。

2. 現地振動測定の概要

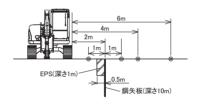
(1) 振動低減対策の概要

防振壁の基本材料として、土止めや水止めに用いられる鋼矢板(Ⅲ型,水平方向延長20.4 m,深さ方向

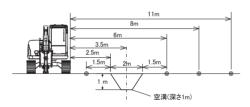
延長10 m)を使用した。さらに、振動低減効果を高めるために鋼矢板に沿ってEPS(水平方向12 m,幅0.5 m,深さ1 m)か空溝(水平方向延長20 m,深さ1 m または2 m)の設置を行った。地盤振動を比較した振動低減対策の内容と測定位置を図一1に示す。なお、各対策の比較のため、測定は同一地盤にて行った。〈測定における振動低減対策の内容〉

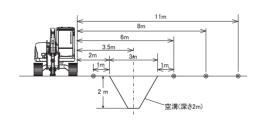

(対策1) 鋼矢板のみ設置した状態

(対策2) 鋼矢板に沿って EPS を設置した状態


(対策3) 空溝の設置のみの状態

(対策4) 鋼矢板に沿って空溝を設置した状態


(対策1) 鋼矢板



(対策 2) 鋼矢板+EPS

(対策3)空溝

(対策4) 鋼矢板+空溝

図―1 振動低減対策の内容と測定位置

84 建設の施工企画 '13.1

(2) 振動測定の方法

振動測定では振動源として 0.7 m³ 級のバックホウを使用し、その走行時の振動を測定した。走行は、バックホウ機体側面が振動低減対策箇所の近傍の測定点から 1 m 離れた位置に来るようにし、約 6 m の走行範囲を前後進するものとした。バックホウの走行範囲と振動低減対策、測定点の位置を図—2に示す。

測定点は、振動源のバックホウの機体側面より1mの位置に1点、防振壁を挟んで反対側に3点を設置した。振動測定は、バックホウの前後進1往復を1サイクルとする連続した3サイクルを1回の測定とし、各振動低減対策について3回の測定を実施した。

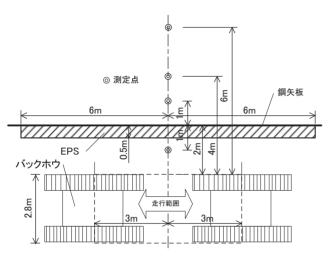
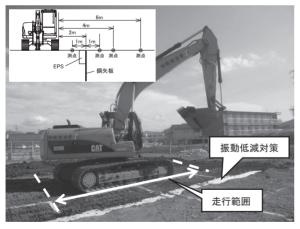
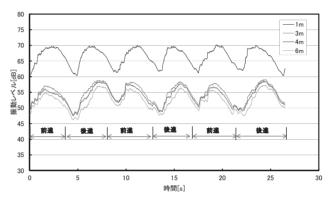



図-2 振動測定の位置(鋼矢板+ EPS)



写真― 1 振動測定の状況(鋼矢板+ EPS)

3. 現地振動測定の結果

各振動低減対策について比較した結果は次のとおり である。

(1) 鋼矢板と EPS の振動低減効果 (対策 1,対策 2) 対策 1 の各測定点における振動レベルの時間波形を 図—3 に示す。同図より,バックホウの機体側面よ り 1 m の位置の測定点と防振壁を挟んだ測定点で振動レベルが大きく低減していた。対策 1、対策 2 の振動レベル L_{10} の低減量を 2 m 一 4 に示す。 2 m 一 4 は、バックホウの機体側面より 1 m の位置の測定点を基準として、振動レベルの低減量を取りまとめたものである。この図より、対策を行った場合に振動低減量が増加していることから、対策による低減効果が確認された。対策 1 は鋼矢板から $1 \sim 4$ m 離れた位置で無対策の場合と比べて $3 \sim 5$ dB 低減していた。 さらに鋼矢板に EPS を付加した対策 2 の場合では、振動低減効果はさらに 5 dB 程度の向上が確認された。

図一3 振動レベルの時間波形の比較(対策1)

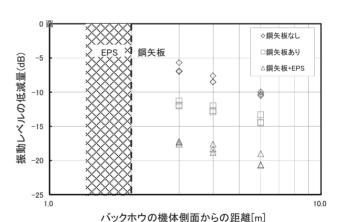


図-4 地盤振動の距離減衰の比較(対策1,対策2)

(2) 空溝による振動低減効果 (対策3)

対策 3 の空溝の深さが、1 m 2 2 m の各測定点における振動レベル L_{10} の低減量を2 一 5 に示す。同図より、空溝の中心から 2.5 m ~ 7.5 m 離れた位置の振動低減量は、深さ 1 m (地表面の開口幅 2 m) の場合で無対策の場合と比べて約 5 dB であった。さらに空溝を深さ 2 m (地表面との開口幅 3 m) とした場合は、深さ 1 m の場合と比べてさらに約 3 dB の振動低減効果が向上することが確認された。

(3) 空溝と鋼矢板による振動低減効果 (対策 4)

対策4の振動レベルL₁₀の低減量を図一6に示す。

建設の施工企画 '13.1 85

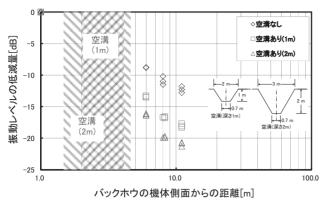


図-5 地盤振動の距離減衰の比較(対策3)

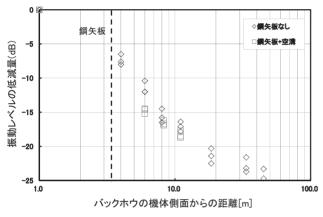
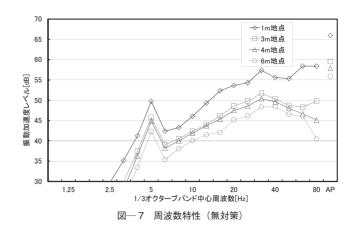
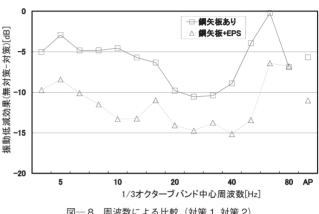


図-6 地盤振動の距離減衰の比較(対策4)

同図より、鋼矢板(空溝中心)から2.5m離れた位置 では、 $3 \sim 4$ dB の振動低減効果が確認された。しかし、 鋼矢板からの距離が4mを超える位置では、対策の 効果はあまりなく振動低減量はほぼ同じ結果となっ た。これは、振動低減対策の端部を回折した振動の影 響を受けたものと考えられる。

4. 検証・考察


現地振動測定の結果から、振動伝搬経路における振 動低減効果の検証を行った。


(1) 周波数分析による振動低減効果

振動低減対策がない場合の各測定点の地盤振動の周 波数特性を図一7に示す。同図より、振動源としたバッ クホウの走行による振動加速度レベルは, 5 Hz およ び31.5 Hzの周波数が卓越しており、振動源より離れ た測定点も周波数特性に変化はみられない。なお、各 振動低減対策の比較では、測定下限値の 30 dB を下回 る 3.15 Hz 以下の周波数帯域を除いた。

①鋼矢板と EPS の振動低減効果の特性

振動低減対策箇所を挟む測定点間の各周波数の振動 加速度レベルの低減量について、対策1と対策2の低

図一8 周波数による比較(対策1,対策2)

減効果を図-8に示す。同図の振動低減効果は、無 対策の場合における各周波数の振動加速度レベルに対 する低減量を比較したものである。

対策1の場合は、63 Hz における低減効果はみられ ないものの,その他の周波数では低減効果が確認でき, その中でも 20~40 Hz で効果が大きく. 他の周波数 と比べて5dB程優れている。さらに対策2の場合は、 80 Hz を除く周波数で、鋼矢板の場合と比べて約5 dB の振動低減効果の向上がみられた。

②空溝の振動低減効果の特性

対策3の空溝の深さが1mと2mの場合の各周波 数における振動加速度レベルの低減量を図-9に示

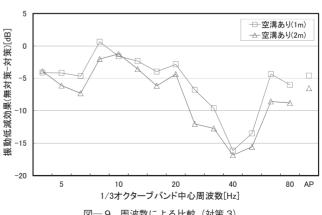


図-9 周波数による比較(対策3)

86 建設の施工企画 '13.1

す。深さ $1 \, \mathrm{m}$ の空溝では、 $25 \sim 80 \, \mathrm{Hz}$ が主に低減しており、その中でも $40 \, \mathrm{Hz}$ の振動低減効果が優れている。深さ $2 \, \mathrm{m}$ の場合も同様に $40 \, \mathrm{Hz}$ の低減効果は大きく、深さ $1 \, \mathrm{m}$ の場合と比べてほぼ全ての周波数帯域で約 $3 \, \mathrm{dB}$ の振動低減効果の向上がみられた。

(2) 鋼矢板延長による振動低減効果の予測

民家など振動低減対策の対象となる場所や方向に対して,防振壁の設置により地盤振動の低減を図るには,防振壁の端部を回折する振動を考慮した対策を選定しなければならない。

本測定を実施した施工現場で、回転杭施工時における地盤振動の低減対策を検討するため、図— 10 に示す敷地境界における鋼矢板の設置について振動予測を行った。振動予測は、地表面を回折する振動をより低減するために必要な鋼矢板の延長距離について行った。予測地点における振動予測は、道路環境影響評価の技術手法における標準予測手法である距離減衰式 11 を基本とした。振動源からの距離 r (m) における振動レベル r (dB) を導くための距離減衰式の基本式は式(1) で示される。

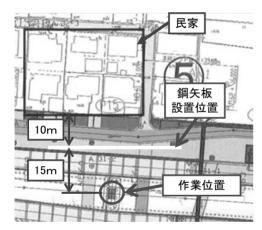


図-10 振動予測における振動源と鋼矢板の位置

$$L = L_0 - 15\log_{10}\left(\frac{r}{r_0}\right) - 8.68 \,\alpha \,(r - r_0) \tag{1}$$

ここで、 L_0 は基準点における振動レベル、 r_0 は振動源から基準点までの距離(5 m)、a は内部減衰係数である。予測は、予測地点が振動源から離れるほど内部減衰係数の影響が大きくなり振動低減効果が有利になると判断して、内部減衰係数を無視するものとした。振動の距離減衰は、 $\mathbf{2}$ 一 4、 $\mathbf{5}$ の測定結果より導いた近似式の係数を用いるものとした。回転杭施工時の振動の大きさは、オールケーシング工法における文献値 2 を参考として、基準点における振動レベルを $L_0=65$ dB とした。

上記条件による地盤振動に対して、民家における振動低減対策として、鋼矢板を 60 m 設置した場合の振動低減効果を予測したコンター図を図— 11 に示す。振動源より 15 m 離れた位置に鋼矢板を設置することで振動低減の対象となる民家付近では、約 5 dB の低減効果が予測される。

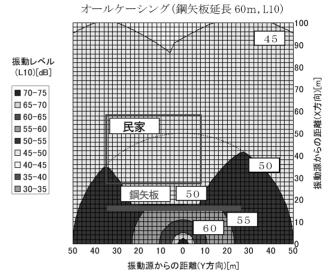


図-11 振動低減効果の予測

(3) 現場での振動低減対策とその効果

図―11では、鋼矢板を60mより更に延長することで、鋼矢板の端部から地表面を回折する振動が更に低減することが予測される。しかし、振動低減対象場所で地中を回折した振動の影響が大きくなり、鋼矢板の設置距離の延長による振動低減効果には限界がある。

本測定を実施した施工現場では、振動源となる建設機械の周囲に空溝を設けることで振動低減対策を図り、また、重点箇所に対しては、敷地境界に鋼矢板、振動源に近い位置に表層部深さ1mの空溝を設けた。このように工事中に振動低減対策を施すことにより、施工現場周辺に対する環境対策を図ることができた。

5. まとめ

本稿において、現地振動測定より鋼矢板、EPS、空 溝を組み合わせた振動低減対策の効果を検証した。そ の結果、以下のことが明らかとなった。

①鋼矢板を振動低減対策とした場合(対策 1),振動レベル L_{10} の振動低減効果は $3\sim 5$ dB であり,EPSを付加した場合(対策 2)では, さらに 5 dB 低減した。周波数特性は、対策 1、対策 2 ともに $20\sim 40$ Hzに対して優れた低減効果がみられた。

建設の施工企画 '13.1 87

- ②空溝を振動低減対策とした場合(対策 3)、空溝の深 2 1 m の振動レベル L_{10} の振動低減効果は約 5 dB で あり、空溝の深さ 2 m では振動低減効果が約 3 dB 向上した。周波数特性は 40 Hz で優れた低減効果が みられた。
- ③振動低減対策の設置長さが十分でない場合,防振壁 の端部を回折する振動の影響が大きくなり,低減効 果が小さくなる。振動源に対する囲い込みや設置長 さを延長することにより,振動の回り込み距離を大 きくすることで距離減衰による振動低減効果の向上 が期待される。

6. おわりに

本稿の現地振動測定により、空溝、鋼矢板による振動低減対策が高い低減効果を発揮することがわかった。この結果が、今後、住宅密集地など地盤振動低減が求められる建設工事および道路供用における振動低減対策の参考になればと考える次第である。

J C M A

《参考文献》

- 1) (財道路環境研究所: 道路環境影響評価の技術手法 2007 改定版, 第 2 巻, pp. 330 \sim 338, 2007 年

[筆者紹介] 齋藤 聡輔(さいとう そうすけ) 一般社団法人 日本建設機械施工協会 施工技術総合研究所 研究第四部 研究員

平成 24 年度版 建設機械等損料表 発売中

■内 容

- ・国土交通省制定「建設機械等損料算定表」に基づいて 編集
- ・機械経費・機械損料に関係する通達類を掲載
- ・損料積算例や損料表の構成等をわかりやすく解説
- ・ 各機械の燃料 (電力) 消費量を掲載
- ・主な機械の概要と特徴を写真・図入りで解説
- ・主な機械には「日本建設機械要覧(当協会発行)」の 関連ページを掲載
- B5 判 約 680 ページ
- ■一般価格 7,700 円(本体 7,334 円)
- ■会員価格(官公庁・学校関係含) 6,600 円(本体 6,286 円)
- ■送料(単価) 600円(但し沖縄県を除く日本国内)
 - 注1) 複数冊発注の場合は送料単価を減額します。
 - 注 2) 沖縄県の方は一般社団法人沖縄しまたて協会 (電話:098-879-2097) にお申し込み下さい。

一般社団法人 日本建設機械施工協会

〒 105-0011 東京都港区芝公園 3-5-8(機械振興会館) Tel. 03 (3433) 1501 Fax. 03 (3432) 0289 http://www.jcmanet.or.jp